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based phosphors is achieving high luminescence efficiency, 
which depends on the synthesis method, dopant concentra-
tion, and particle size [1, 2]. Further investigation is needed 
to fully understand the electronic structure and optical prop-
erties of strontium aluminate based phosphors.

Solid state reaction [7], sol-gel method [8], combustion 
synthesis [9, 10], reflux method [11] are the most commonly 
used synthesis strategies to develop rare-earth doped stron-
tium aluminates. The most used method for creating excel-
lent phosphor materials is incorporating rare-earth ions as 
luminescent centers within an appropriate host material is 
conventional solid state reaction method. Literature sug-
gests that attainment of single phase of strontium aluminate 
is possible only at high temperature sintering at > = 12000 C 
[11–13]. Below this temperature range, mixed phases 
of strontium aluminates especially SrAl2O4, Sr3Al2O6, 
Sr4Al14O25 are formed. Even if the presence of more than 
one phases were reported, the effects due to coexistence of 
the phases were often neglected. Among the possible stable 
phases, SrAl2O4 with a large band gap ~ 6.6 eV [14] is the 
most studied host for luminescent material.

The activator rare earth ions are considered as the optical 
property deciding factor in nanophosphors. It is the transi-
tions in their f-f, f-d levels, that gives the beneficial optical 
properties. Among the rare earth elements, europium (Eu) is 
considered to be best activator for red emission. Europium 

Introduction

Aluminates have been explored as the most suited host for 
creating persistent luminescent materials [1]. The excep-
tional optical properties of strontium aluminate based 
phosphor has made it an attractive candidate for diverse 
technological applications, including solid state lighting 
[2–4], optoelectronics [4], photocatalysis [5] and biomedi-
cal imaging [6]. Despite extensive research on strontium 
aluminate-based phosphors, research gaps still need to be 
addressed to understand and optimize their properties fully. 
One of the challenges in developing strontium aluminate 
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The current study involves the synthesis and characterisation of europium doped strontium aluminate nanophosphors using 
the solid-state reaction method with varying concentrations of europium. The existence of the SrAl2O4 phase in all samples 
was verified using X-ray diffraction and FTIR analysis. The lattice parameters as well as phase fractions were determined 
using Rietveld refinement. Surface morphology was studied using field emission scanning electron microscope. Using 
the Tauc plot method acquired from the diffuse reflectance spectra, the band gaps of the samples were determined and 
it was found that the doped samples possess lower band gaps compared to the host. Our findings demonstrate that these 
nanophosphors exhibiting bright orange-red emission under UV excitation with quantum efficiency 70.68%, can be applied 
for display and fluorescence imaging.
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can exist in two ionised states namely Eu2+ and Eu3+. Previ-
ous studies have reported the properties of SrAl2O4: Eu3+ 
nanophosphors obtained at a relatively low temperature of 
11000 C with the existence of a minor phase, but these lack 
detailed in-depth analysis [3, 15–17].

Here we report, solid state synthesis of Eu3+ doped 
SrAl2O4 with varying concentrations of Eu3+ ions from 0 
at% to 3 at% at 11000 C, along with comprehensive analysis 
of the structural and optical properties of the synthesised 
phosphors.

Experimental Details

Materials and Methods

Using analytical grade raw materials, the high-temperature 
solid-state reaction method was employed to synthesise 
undoped and europium doped strontium aluminate phos-
phor, namely strontium carbonate (SrCO3, Merck, 99.95%), 
aluminium oxide (Al2O3, Merck, 99.95%) and europium 
(III) nitrate hydrate(Eu(NO3)3 ·6H2O, Sigma Aldrich, 
99.99%). The preparation of Sr1-xAl2O4:xEu3+ phosphor 
(x = 0 at%, 0.5at. %, 1at. %, 1.5 at%, 2 at%, 2.5at. %, 3at. %) 
began with the precise weighing of raw materials based on 
their nominal compositions. Before synthesis, the precursor 
compounds were stoichiometrically weighed and subjected 
to a thorough mixing and milling procedure using an agate 
mortar and pestle for 2 h. The prepared sample was loaded 
into an alumina crucible and subsequently subjected to fir-
ing in air for 5 h at the specified temperature of 1100 °C. 
After cooling in the programmable furnace and performing 
additional grinding, the samples were obtained.

A benchtop powder X-ray diffractometer (Aeris Research, 
PANalytical) was utilized to thoroughly analyse and iden-
tify the crystalline phases of the synthesised samples. The 
diffractometer was operated with Cu Kα radiation (λ = 1.54 
Å) and scanned within a range of 2θ = 10° − 90°. The sur-
face morphology of the selected samples were performed 
by a FESEM (Apero 2 SEM, ThermoFisher Scientific). Fou-
rier transform infrared (FTIR) spectra were acquired using a 
Perkin Elmer Spectrum Two FTIR Spectrometer through an 
attenuated total reflection (ATR) contact sampling method 
to delve deeper into the structural properties of the samples 
at room temperature. The spectra were collected within the 
range of 400 − 4000 cm− 1. The optical characteristics of the 
samples were evaluated by recording diffuse reflectance 
spectra with a Shimadzu UV-2600 UV-VIS-NIR spectro-
photometer and performing photoluminescence analysis 
using a Horiba Fluoromax-4 C spectrofluorometer. The 
spectra were recorded by adjusting the excitation and emis-
sion slits to a width of 3 nm and integration time of 0.1 s. 
The quantum efficiency of the optimised sample were deter-
mined using the Edinburgh FLS1000 combined steady state 
and phosphorescence lifetime spectrometer.

Results and Discussion

Structure and Morphology

The powder X-ray diffraction (PXRD) patterns of synthe-
sised samples of Sr1-xAl2O4 :x Eu3+(x = 0 at% − 3 at%) are 
shown in Fig. 1. All the dominant X-ray diffraction peaks 
observed at 2θ = 19.950, 28.380, 29.270, 29.910 and 35.140 
match well with standard file No. 00-034-0379, which are 
ascribed to the reflections from crystallographic planes 
(001), (−2 11), (220), (211) and (031) of monoclinic SrAl2O4. 
A minor peak is present at 320

, indicating the Sr3Al2O6 
phase. Another peaks present at 19.550 and 27.970 indicates 
presence of another minor phase Sr7Al12O25.

Rietveld refinement was carried out for the pure sample 
in the range 100 -900 using FullProf software. The refine-
ment procedure confirmed the presence of a minor phase 
of tri strontium di aluminium hexoxide (Sr3Al2O6). The 
phase fraction of the SrAl2O4 was 92.03%, while that of 
Sr3Al2O6 was 7.97%. The global user-weighted Chi2 value 
(Bragg contrib.) reached 3.38, Rwp=5.72, Rexp=3.11, and 
Rp=4.19( Fig. 2). The refinement values obtained are shown 
in Table 1.

Using the Scherrer equation, the average crystallite size 
of nanophosphors was determined [18].

D =
kλ

βcosθFig. 1 X-Ray diffraction patterns obtained for Sr1-xAl2O4 :x Eu(x = 0 
at% − 3 at%) nanophosphors
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For determining crystallite size, high intensity peaks cor-
responding to the planes (−2 11), (220) and (211) peaks were 
selected. The calculated average crystallite size ranges from 
45.23 nm to 42.07 nm as the Eu content increases from 0 
at% to 3 at%(Table 2). The slight higher angle shift observed 
in the peaks of the doped samples, compared to the undoped 
sample, can be explained by the replacement of Sr2+ (1.21 
Å) ions with smaller Eu3+ (1.01 Å) ions in the host lattice. 
This causes a reduction in the unit cell size, leading to the 
observed shift in the peaks.

The variance in ionic radius concerning the doped 
and substituting ions, termed acceptable percentage 

Table 1 Results of Rietveld refinement
Phase Cell Parameter Direct Cell 

volume
( Å3)

Bragg 
R 
factor

Phase 
Frac-
tion 
(%)

Rf 
fac-
tor

SrAl2O4 a = 8.444 Å 
b = 8.827 Å 
c = 5.154 Å
α = 900 β = 93.370 
γ = 900

383.5277 4.07 92.03 2.86

Sr3Al2O6 a = 15.827 Å 
b = 15.827 Å 
c = 15.827 Å
α = 900 β = 900 
γ = 900

3965.099 8.15 7.97 4.75

Fig. 3 SEM micrographs of 
SrAl2O4 with Europium con-
centration (a) Eu = 0 at% and 
(b) Eu = 2.5 at%. Particle size 
distribution of the spherical 
particles obtained for SrAl2O4 
with Europium concentrations (c) 
Eu = 0 at% and (d) Eu = 2.5 at%

 

Fig. 2 (a) Rietveld refinement for the PXRD pattern of undoped SrAl2O4 (b) The crystal structure of SrAl2O4
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where Rs and Rd are the ionic radii of host lattice ion(Sr2+) 
and dopant ion (Eu3+)ions respectively. The estimated 
value of Dr as 16.5% which confirms that Eu3+ ions replace 
Sr2+ions.

Scanning electron microscopy was employed to inves-
tigate the surface morphology of both the undoped sample 
and the sample containing 2.5% europium. Figure 3(a) and 
Fig. 3(b) depict the SEM micrographs obtained for the 
undoped sample and the sample containing 2.5% europium, 
respectively. The micrographs reveal that the undoped stron-
tium aluminate particles exhibit a combination of spherical 
particles along with sheet like structures. Factors such as 
annealing temperatures and plane specific surface energy 
affect the relative growth in different direction and a shape 
change of particles is expected [20]. In contrast, the micro-
graph of the doped sample predominantly shows spherical 
particles along with some elongated rod like structures. The 
particle size analysis of the spherical particles was con-
ducted using ImageJ software. It is obtained that the average 

difference(Dr) should be less than 30% for the substitution 
to be permissible [19]. Dr is given by equation

Dr =
Rs − Rd

Rs

Table 2 Variation of crystallite size and band gap as a function of Eu 
doping concentration
Sl No. Doping concentration 

of Eu3+ ions
(at%)

Crystallite size
(nm)

Band 
gap
(eV)

1. 0 45 6.02
2. 0.5 44 5.89
3. 1.0 43 5.80
4. 1.5 42 5.67
5. 2.0 42 5.82
6. 2.5 42 5.69
7. 3.0 42 5.65

Fig. 5 (a) Diffuse reflectance 
spectra as a function of euro-
pium concentration (b) Band 
gap obtained for Sr1-xAl2O4 
:xEu (x = 0 at% − 3 at%) 
nanophosphors

 

Fig. 4 FTIR spectra of host 
SrAl2O
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increases; this absorption can be assigned to the 7F0→5L6 
transition of the dopant ions [25].

The band gap of material was determined by employ-
ing the Tauc plot method, which utilises the Kubelka-Munk 
function, a widely acknowledged technique for such compu-
tations [3, 26, 27]. Kubelka-Munk method uses the relation,

F (R) =
(1− R)2

2R

where R is the reflectance obtained from DRS spectroscopy, 
the plot of (F(R)hν)2 versus hν is demonstrated in Fig. 5(b). 
The direct band gap of the pure SrAl2O4 sample was mea-
sured to be 6.02 eV, which is lower than the literature-
reported value of 6.4 eV [27, 28]. Enhanced carrier-carrier 
interaction can cause a reduction (renormalisation) of the 
band gap by increasing the carrier concentrations in the con-
duction and valence bands [29]. It is found that the band 
gap decreases and reaches a value of 5.65 eV for the Eu 
concentration 3at.%.

Photoluminescence spectroscopy was used to investigate 
the impact of different concentrations of europium ions on 
the photoluminescence emission spectra of Sr1-xAl2O4:xEu 
nanophosphors, as presented in Fig. 6(a). The intensity and 
colour richness of the emission spectra were evaluated by 
recording the spectra using an excitation wavelength of 
260 nm.

The data outcome demonstrates that the luminescence 
intensity of Sr1-xAl2O4:xEu nanophosphors rises with the 
concentration of Eu3+ ions up to an optimum level of 2.5 
at.%. Beyond this, the intensity of luminescence reduces 
owing to the concentration quenching effect that arises 
from nonradiative energy transfer between neighbouring 
europium (III) ions [30, 31]. Figure 6(b) depicts the Com-
mission Internationale de I’ Eclairage (CIE) 1931 diagram 
of Sr1-xAl2O4:xEu3+ nanoparticles. Table 3 shows the 

particle size of the spherical particles in the undoped sample 
is 99 nm (Fig. 3(c)) and the doped sample exhibits average 
particle size of 70 nm (Fig. 3(d)) similar to the observed 
variation in crystallite size.

FTIR spectroscopy was utilised to determine and analyse 
the functional groups present in the compound, providing 
insight into its chemical composition and structure. Figure 4 
shows the FTIR spectrum of undoped SrAl2O4, acquired at 
room temperature from 4000 cm− 1 to 400 cm− 1.The promi-
nent peaks examined were 1447.53 cm− 1, 1096.76 cm− 1, 
841.91 cm− 1,775.07 cm− 1, 640.54 cm− 1.

The feeble peak at 1447.53 cm-1 indicates the negligi-
ble presence of SrCO3, which is used as precursors of the 
synthesis [21]. Another peak at 1096 cm-1 is ascribed to 
the Al-O bond [22]. The intense peaks of the FTIR spectra 
of undoped SrAl2O4 in the fingerprint region are found at 
841.91 cm-1 and 775.07 cm-1, indicative of the Sr-O-Al and 
Al-O symmetric stretching vibrations, respectively, within 
the SrAl2O4 lattice [10, 22, 23]. The peak at 640.54 cm-1 
corresponds to the anti-symmetric stretching vibrations of 
Sr-O bond [8, 24].

Optical Analysis

The experimental diffuse reflectance spectra (DRS) 
obtained for the Sr1-xAl2O4 :x Eu3+(x = 0 at% − 3 at%) 
nanoparticles are displayed in the Fig. 5 (a). According to 
the spectra, it can be observed that all the samples demon-
strate a significant level of transparency within the visible 
range. The reflection spectra for all the samples in the range 
400 to 800 nm range remain qualitatively similar, regardless 
of the level of europium substitution. The absorption edge 
was observed at approximately 215 and 305 nm, a phenom-
enon that can be ascribed to the self-absorption band of the 
major phase SrAl2O4 (6.6 eV) and minor phase Sr3Al2O6 
(3.8 eV) respectively [25]. An inflexion point can be noticed 
at 397 nm, which intensifies as the concentration of Eu3+ 

Fig. 6 (a) PL emission spectrum 
of Eu doped SrAl2O4 taken with 
excitation at 260 nm [inset]photo 
of emission from powder sample 
with doping concentration 2.5 
at% (a break region is used to 
avoid the second harmonics of 
the excitation wave length) (b) 
CIE colour coordinates of euro-
pium doped materials
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The prominent emission peaks are observed at 580 nm, 
590 nm, 610 and 655 nm. The prepared materials have been 
observed to display unique emissions that can be attributed 
to the trivalent europium ion. These emissions arise from the 
5D0→7FJ transitions, where J takes 0, 1, 2, and 3 [32]. The 
peak at 610 nm is part of a doublet, with the second peak at 
617 nm. This doublet formation is due to the occupancy of 
different strontium sites(Sr1) and (Sr2) sites by Eu3+. It is 
worth noting that the most intense emission at a wavelength 
of 590 nm, observed across all europium concentrations, 
can be ascribed to 5D0→7F1 magnetic dipole transition [33]. 
The highest intensity possessed by this transition is a direct 
manifestation of the centrosymmetric crystal structure of 
the material and is largely insensitive to the local environ-
ment surrounding the Eu3+ ion [25]. The f-f transitions of 
trivalent lanthanides are not significantly influenced by the 
presence of ligand ions in the host lattice, as most valence 

calculated CIE colour coordinates (x, y) from the emission 
spectral measurements.

The local environment of Eu3+ can be probed by ana-
lysing the absorption and luminescence spectra of the ion. 
Spectroscopic data on the fine structure and relative tran-
sition intensities can reveal information on the Eu3+ site’s 
point group symmetry and coordination polyhedron [25]. 

Table 3 Variation of CIE coordinates with dopant concentration
Europium Concentration
(in at%)

CIE Coordinates
x y

0 0.25 0.32
0.5 0.53 0.35
1.0 0.53 0.35
1.5 0.51 0.31
2.0 0.55 0.37
2.5 0.51 0.31
3.0 0.53 0.33

Fig. 8 Quantum efficiency of the 
SrAl2O4:Eu3+ (2.5 at%)phosphor
 

Fig. 7 (a) Energy level diagram 
showing transitions in Eu3+ ion 
in Sr1-xAl2O4:xEu matrix (b) 
Variation of the asymmetry ratio 
in Sr1-xAl2O4:xEu, when excited 
by 260 nm, with respect to the 
concentration of Eu3+ ions
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for Eu 2.5 at% doped sample excited at 234 nm is 70.68%. 
These findings provide valuable insights into the electronic 
structure and optical properties of europium-doped stron-
tium aluminate nanophosphors, highlighting their potential 
as highly efficient materials luminescent applications. The 
results of this study could pave the way for the development 
of next-generation luminescent materials with enhanced 
optical properties, opening up new avenues in the field of 
nanophotonics and nanomedicine.
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